Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available October 1, 2026
- 
            Free, publicly-accessible full text available July 18, 2026
- 
            The Windows registry contains a plethora of information in a hierarchical database. It includes system-wide settings, user preferences, installed programs, and recently accessed files and maintains timestamps that can be used to construct a detailed timeline of user activities. However, these data are unencrypted and thus vulnerable to exploitation by malicious actors who gain access to this repository. To address this security and privacy concern, we propose a novel approach that efficiently encrypts and decrypts sensitive registry data in real time. Our developed proof-of-concept program intercepts interactions between the registry’s application programming interfaces (APIs) and other Windows applications using an advanced hooking technique. This enables the proposed system to be transparent to users without requiring any changes to the operating system or installed software. Our approach also implements the data protection API (DPAPI) developed by Microsoft to securely manage each user’s encryption key. Ultimately, our research provides an enhanced security and privacy framework for the Windows registry, effectively fortifying the registry against security and privacy threats while maintaining its accessibility to legitimate users and applications.more » « less
- 
            Encryption is a fundamental security measure to safeguard data during transmission to ensure confidentiality while at the same time posing a great challenge for traditional packet and traffic inspection. In response to the proliferation of diverse network traffic patterns from Internet-of-Things devices, websites, and mobile applications, understanding and classifying encrypted traffic are crucial for network administrators, cybersecurity professionals, and policy enforcement entities. This paper presents a comprehensive survey of recent advancements in machine-learning-driven encrypted traffic analysis and classification. The primary goals of our survey are two-fold: First, we present the overall procedure and provide a detailed explanation of utilizing machine learning in analyzing and classifying encrypted network traffic. Second, we review state-of-the-art techniques and methodologies in traffic analysis. Our aim is to provide insights into current practices and future directions in encrypted traffic analysis and classification, especially machine-learning-based analysis.more » « less
- 
            Blockchain technology has heralded a new era in digital innovation, revolutionizing our approach to designing and building distributed applications in the digital sphere. Blockchain technology operates as an immutable digital ledger, where each entry representing a digital transaction is indelible and cannot be altered once established. Initially designed as the fundamental framework for cryptocurrencies, blockchain has outgrown its original purpose, demonstrating significant potential in various industries and offering a variety of security and privacy features. Our study provides a thorough and current survey of blockchain applications, security, privacy concepts, primitives, and threat models. It stands out by concentrating on how blockchain technology intersects with emerging fields like IoT, EVs, FinTech, and healthcare systems in a single framework. To provide security and privacy features, blockchain systems employ different foundational notions and primitives while tackling diverse adversarial scenarios with various capabilities and goals. This study presents a fresh examination of the current state of applications, security and privacy notions and primitives, and threat models in blockchain systems. Additionally, this work highlights existing gaps in knowledge and outlines open questions, aiming to stimulate interest in further advancements in the field.more » « lessFree, publicly-accessible full text available February 6, 2026
- 
            The Windows registry stores a glut of information containing settings and data utilized by the Microsoft operating system (OS) and other applications. For example, information such as user credentials, installed programs, recently used applications and documents, accessed resources such as local, remote, and removable devices can all be found in this database. More revealingly, the registry also has time and date stamps that can help build a timeline of user activities. The Windows registry can be easily queried by either malicious or benign applications. This is possible through the Windows Application Program Interface (API) and other OS built-in utilities. In this paper, we develop and demonstrate a program able to collect and infer a user’s rich activities by accessing the Windows registry alone. This information, also referred to as the user’s digital footprint, can be used to devise an exploit or create a privacy threat. Our custom developed application will demonstrate how a user’s digital footprint can be acquired by a malicious application from a Windows registry, without alerting security software. In addition, this information can be exported to a set of comma delimited files, making it easy to import them into other analysis applications.more » « less
- 
            Despite encryption, the packet size is still visible, enabling observers to infer private information in the Internet of Things (IoT) environment (e.g., IoT device identification). Packet padding obfuscates packet-length characteristics with a high data overhead because it relies on adding noise to the data. This paper proposes a more data-efficient approach that randomizes packet sizes without adding noise. We achieve this by splitting large TCP segments into random-sized chunks; hence, the packet length distribution is obfuscated without adding noise data. Our client–server implementation using TCP sockets demonstrates the feasibility of our approach at the application level. We realize our packet size control by adjusting two local socket-programming parameters. First, we enable the TCP_NODELAY option to send out each packet with our specified length. Second, we downsize the sending buffer to prevent the sender from pushing out more data than can be received, which could disable our control of the packet sizes. We simulate our defense on a network trace of four IoT devices and show a reduction in device classification accuracy from 98% to 63%, close to random guessing. Meanwhile, the real-world data transmission experiments show that the added latency is reasonable, less than 21%, while the added packet header overhead is only about 5%.more » « less
- 
            Deep learning models have been used in creating various effective image classification applications. However, they are vulnerable to adversarial attacks that seek to misguide the models into predicting incorrect classes. Our study of major adversarial attack models shows that they all specifically target and exploit the neural networking structures in their designs. This understanding led us to develop a hypothesis that most classical machine learning models, such as random forest (RF), are immune to adversarial attack models because they do not rely on neural network design at all. Our experimental study of classical machine learning models against popular adversarial attacks supports this hypothesis. Based on this hypothesis, we propose a new adversarial-aware deep learning system by using a classical machine learning model as the secondary verification system to complement the primary deep learning model in image classification. Although the secondary classical machine learning model has less accurate output, it is only used for verification purposes, which does not impact the output accuracy of the primary deep learning model, and, at the same time, can effectively detect an adversarial attack when a clear mismatch occurs. Our experiments based on the CIFAR-100 dataset show that our proposed approach outperforms current state-of-the-art adversarial defense systems.more » « less
- 
            There is an increasing demand for processing large volumes of unstructured data for a wide variety of applications. However, protection measures for these big data sets are still in their infancy, which could lead to significant security and privacy issues. Attribute-based access control (ABAC) provides a dynamic and flexible solution that is effective for mediating access. We analyzed and implemented a prototype application of ABAC to large dataset processing in Amazon Web Services, using open-source versions of Apache Hadoop, Ranger, and Atlas. The Hadoop ecosystem is one of the most popular frameworks for large dataset processing and storage and is adopted by major cloud service providers. We conducted a rigorous analysis of cybersecurity in implementing ABAC policies in Hadoop, including developing a synthetic dataset of information at multiple sensitivity levels that realistically represents healthcare and connected social media data. We then developed Apache Spark programs that extract, connect, and transform data in a manner representative of a realistic use case. Our result is a framework for securing big data. Applying this framework ensures that serious cybersecurity concerns are addressed. We provide details of our analysis and experimentation code in a GitHub repository for further research by the community.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
